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Symmetries and supersymmetries of the quantum harmonic 
oscillator 

J Beckers, D Dehin and V Hussint 
Physique thkorique et mathimatique, Institut de Physique au Sart Tilman, B5, Universiti 
de  Liege, 8-4000 Liege, Belgium 

Received 9 June 1986 

Abstract. The supersymmetric version of the one-dimensional harmonic oscillator is studied 
by taking into account its conformal properties. The largest superalgebra of symmetries 
and supersymmetries is derived as Osp(2/2)0 Sh( l ) ,  the semidirect sum of Osp(2/2) and 
the Heisenberg superalgebra. Through a one-to-one correspondence between the non- 
relativistic free case and the harmonic oscillator description, we deduce the (expected) 
supersymmetries of the Schrodinger equation. The above structure appears as the largest 
spectrum-generating superalgebra of the harmonic oscillator and its representation within 
an energy basis is given. The physical three-dimensional case is also considered when the 
maximal set of (super)symmetries is required and this case is compared with recent work. 

1. Introduction 

Supersymmetric quantum mechanics as initiated by Witten (1981, 1982) has already 
been developed in much recent work (Salomonson and Van Holten 1982, De Crom- 
brugghe and Rittenberg 1983, Fubini and Rabinovici 1984, Ravndal 1984, D’Hoker 
and Vinet 1984a, b, 1985a, b, Balantekin 1985, Gamboa and Zanelli 1985 and references 
therein). More particularly (Witten 1981, 1982, Salomonson and Van Holten 1982, De 
Crombrugghe and Rittenberg 1983, Ravndal 1984, Balantekin 1985, Gamboa and 
Zanelli 1985) the supersymmetric harmonic oscillator has been considered as one of 
the simplest examples in N = 2 supersymmetric quantum mechanics. In fact, this 
application is a well defined soluble model which possesses both conformal and 
supersymmetric invariances like the ones considered by Fubini and Rabinovici (1984) 
and D’Hoker and Vinet (1984a, 1985a, b). Indeed it is well known (Hagen 1972, 
Niederer 1972) that the maximal kinematical invariance group of the three-dimensional 
free Schrodinger equation is a twelve-parameter Lie group (containing the Galilei 
group, dilations and expansions) and that this invariance group is isomorphic (Niederer 
1973) to the largest group (of coordinate transformations) leaving invariant the corre- 
sponding Schrodinger equation for the harmonic oscillator. Such a group has been 
recently (Beckers and Hussin 1984, Hussin and Sinzinkayo 1985, Hussin and Jacques 
1986) revisited in connection with its maximal subgroups like S 0 ( 3 ) 0 S 0 ( 2 , 1 )  which 
will be of specific interest here as it was in the study of (super)symmetries of the 
magnetic monopole (Jackiw 1980, D’Hoker and Vinet 1984a, 1985a). These contribu- 
tions (Hagen 1972, Niederer 1972, 1973) have opened the so-called ‘non-relativistic 
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1138 J Beckers, D Dehin and V Hussin 

conformal quantum mechanics' where, in fact, the one-parameter Galilei subgroup of 
time translations is replaced by the three-parameter group SL(2, R) - SO(2, l )  - 
SU( 1, 1) of (projective) transformations. 

So superconformal quantum mechanics deals with the harmonic oscillator: in 
particular, its superconformal constants of motion can be derived. Moreover the 
spectrum-generating algebra (Niederer 1973) ho( 1) = s x r (  1) of the harmonic oscillator 
can lead to an interesting superalgebra as in other contexts already discussed for the 
magnetic monopole (D'Hoker and Vinet 1984a, 1985a) and other supersymmetric 
quantum mechanical systems (Balantekin 1985). All these comments do motivate a 
more complete study of the symmetries and supersymmetries of the harmonic oscillator, 
which is the aim of this paper. In fact we will insist on the one-dimensional case 
($0 2-5) and we will discuss the three-dimensional case (00 6,7) in connection with 
recent results (D'Hoker and Vinet 1985a, Balantekin 1985). 

In 0 2 we just recall a few elements on N = 2 supersymmetric quantum mechanics 
(Witten 1981, 1982, Fubini and Rabinovici 1984) and give the known results for the 
one-dimensional harmonic oscillator. Section 3 is devoted to the complete study of 
the conformal symmetries of the supersymmetric harmonic oscillator as well as to the 
one-to-one correspondence with the free case. The whole set of supersymmetries is 
then determined in § 4 leading to the superalgebra Osp(2/2)OSh( I ) ,  this semidirect 
sum dealing with the so-called Heisenberg superalgebra Sh( 1). Then in § 5 we get the 
oscillator representation of this superalgebra when an energy basis is explicitly used, 
the generators being physically interpreted as raising or lowering operators. All these 
results characterise the largest superalgebra of the one-dimensional harmonic oscillator. 
The particularly interesting three-dimensional case is considered in § 6 when we require 
the maximal set of (super)symmetries in correspondence with the previous sections 
and a matrix realisation is proposed. Finally in 0 7 we compare the above three- 
dimensional context with Balantekin's (Balantekin 1985) and we adapt D'Hoker and 
Vinet's construction (D'Hoker and Vinet 1985a) in the context of the harmonic 
oscillator. 

2. N = 2 supersymmetric quantum mechanics and the one-dimensional harmonic 
oscillator 

Several standard procedures (Witten 1981, 1982, Salomonson and Van Holten 1982, 
De Crombrugghe and Rittenberg 1983, Fubini and Rabinovici 1984) for introducing 
supersymmetries have already been discussed. After Witten (1981, 1982) if there are 
operators Q " ( a  = 1,2, .  . . , N )  commuting with the Hamiltonian H 

[Q",HI=O (2.1) 
and satisfying the anticommutation relations 

{Q", Q b }  = 6"bH 

then the quantum mechanical system is supersymmetric. 

two operators associated with the degrees of freedom, i.e. 
For a spin-; particle moving on the line-the simplest N = 2 system-we can define 
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They satisfy the algebra (in correspondence with (2.1) and (2.2)) 

LO*, HI = 0 

I Q + ,  0-I= H and { Q * ,  Q * } = O *  

Such a model in potential theory-supersymmetric quantum mechanics leads to 

where as usual 

[ p, x]  = -i (2.7) 
d 

p = - i z  

it+, 5-) = 1 (51 3 5-t) = 0 t: = 5- (2.8) 

and where the superpotential W(x) is any function of x. 
Moreover, if conformal invariance and supersymmetry have to be combined as 

already discussed by Fubini and Rabinovici (1984) and D'Hoker and Vinet (1984a, b, 
1985a, b), we know that the system has a richer algebraic structure containing S-type 
operators (say S+ and S-) besides Q-type operators (defined here by (2.3) in general 
or by (2 .6)  in connection with the presence of a superpotential). We will come back 
to these fermionic generators within the physical context of the supersymmetric har- 
monic oscillator. 

At the moment let us pay attention to the Q and let us notice that we get from 
(2.5) and (2.6) 

According to (2.3), the Hamiltonian (2.9) leads to 

and 

(2.9) 

(2.10) 

(2.11) 

where the Q ~ ( U  = 1,2) are 

Q l  = 5++5- Q 2  = i(5- - 5+) (2.12) 

and generate a Clifford algebra 

{(c", Qb}=26"bT]. (2.13) 

The latter quantities can easily be realised through 2 x 2 Pauli matrices 

t+ = u+ = f ( (T ' + iu2) 6- = U- =+(a' -ia2) (2.14) Q' = U' Q 2  = u2 

leading to 

[5+ 9 5-1 = I T 3  (2.15) 
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and to the Hamiltonian 

d2 W (2.16) 

I f  different choices of superpotentials have already been considered, let us come 
back here to the very interesting physical case of the harmonic oscillator (the mass m 
is taken as unity) corresponding to 

W (  x )  = twx2. (2.17) 

In such a context, the Hamiltonian (2.16) evidently becomes 

H =+( p’ + w’x’) +tug3 = HB+ H, (2.18) 

where we identify the bosonic and fermionic (expected) parts (Ravndal 1984). The 
supersymmetric charges are explicitly given by 

0- = - 1 ( p + iwx) ( y  :) (2.19) a 
1 0 --(p-iwx) +-a 

or correspondingly 

Q’ = ;( p a l  + wxa’) Q’ = +( pa2 - wxa’). (2.20) 

3. Conformal symmetries of the supersymmetric harmonic oscillator and the one-to- 
one correspondence with the free case 

The symmetry properties of the n-dimensional harmonic oscillator are well known 
(Niederer 1973). In the one-dimensional case corresponding to the group HO(1) the 
associated kinematical invariance algebra is generated by 

P+ = K +iP=i  exp(-iwr)(p+iwx) = i(2w)’”exp(-iwr)a’ 

P- = K - i P  = -i exp(iwt)(p -iwx) = -i(2w)’” exp(iwt)a 

C,  = C1 + iC2 = t i  exp( -2iwt)( p + iwx)* = iw exp( -2iwr)(a+), 
c- = c , - ic - - -1. ,I exp(2iwt)( p -iwxl2 = -iw exp(2iwr)a’ 

(3.1) 

H ~ = + ( P ’ + W ~ X ’ )  = + o { a i ,  a }  

where the last expressions correspond to the oscillator representation (Niederer 1973) 
in terms of bosonic creation (a’) and annihilation ( a )  operators. Let us notice that 
the Hermitian operators P, K ,  C I ,  C2 and HB correspond to the Noetherian constants 
of motion associated with five types (Niederer 1973) of coordinate transformations 
such that 

(3.2a) 

(3.26) 

6r = a,+ a ,  sin 2wr + a, cos 2wr  

6x = w(-al cos 2wf + a, sin 2wr)x + a3 cos ut + a4 sin wr. 

The non-zero commutation relations are 

[ HB 9 c+] = 2wc+ [ HB, c-I = - 2 w c -  [ c+, c-] = - 4 w H ~  (3.3a) 

(3.3b) 

(3.3c) 

[ HB 3 p+] = Up+ [ ffB, P-] = -UP_ 

[ C,, P-]  = 2iwP+ 

[ P,, P-] = 2wl 

[ C-,  P,] = 2 iwP-  
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where 1 is the identity operator. In  (3.3) let us point out the so(2, 1) algebra generated 
by HB, C,, C- (cf ( 3 . 3 ~ ) ) .  these operators being associated with the reparametrisations 
of time ( 3 . 2 ~ )  and being intimately connected with time translational, dilation and 
expansion generators included in the algebra Schr( 1). Such a subalgebra will give the 
conformal character to our developments as already noticed in other papers (Fubini 
and Rabinovici 1984, D’Hoker and Vinet 1984a, b, 1985a, b, Balantekin 1985) dealing 
with supersymmetric quantum mechanics. Moreover let us notice in (3.3) the presence 
of the Heisenberg algebra h(1) generated by P+, P- and I (cf ( 3 . 3 ~ ) ) .  It is in a 
one-to-one correspondence with the Heisenberg algebra of ISchr(l), the central 
extension of Schr( I ) ,  generated by the space translational, pure Galilean and identity 
operators. Consequently the maximal kinematical invariance algebra is the semidirect 
sum so(2, 1) 0 h(1). 

Now the supersymmetric version of the harmonic oscillator characterised by the 
Hamiltonian (2.18) again admits all the preceding ‘bosonic’ symmetries but there are 
also ‘fermionic’ ones which are associated with the following operators 

T* = TI f i T, = exp( 7 iwt)v, (3.4) H -1 
F -  2 O U 3  

the Hermitian operators HF, TI,  T2 leading to three Noetherian constants of motion 
as discussed hereafter. The generators HF, T ,  commute with all the operators (3.1) 
and between themselves they satisfy 

[HF, T*1= *wT* (3.5) 

{ T i ,  T-}  = I. (3.6) 

and 

Indeed all the generators (3.1) (of bosonic type) and HF (of fermionic type) are even 
(Rittenberg 1978) and then satisfy only commutation relations while T,  (of fermionic 
type) are odd (Rittenberg 1978) and satisfy both commutation and anticommutation 
relations. Consequently the supersymmetric version of the one-dimensional harmonic 
oscillator admits a superalgebra ofsymmetries of dimension 8 (plus 1 for the identity 
operator). Its supersubalgebra (3.5) and (3.6) has never been exploited to our know- 
ledge (up  to recent information communicated to us by Durand (1985)). 

All the symmetries (3.1) and (3.4) can be determined within the Lagrangian 
formalism. The classical Lagrangian associated with the Hamiltonian (2.18) is (Ravndal 
1984) 

L = + ( p ’ -  w ’ x ’ )  + iq++ - wqTv (3.7) 

where p = x  and * = * ( I ) .  The fermionic variables Y and PEri are generators of a 
Grassmann algebra and the Hamiltonian (2.18) is recovered by making the identification 

(3.8) 

It is then easy to prove that the symmetries (3.1) are effectively associated with the 
coordinate transformations (3.2) with complementary transformations on given by 

8 q  = iw8fY (3.9) 

T( f )  = exp( - iw t )v - .  

when, in fact, Ur( t )  + W( t ’ )  = 8r+ + 8 9 .  The other remaining symmetries (3.4) corre- 
spond only to transformations on the fermionic variables such that 

(3.10) 8 q  = i b q +  ( i p I  + p z )  exp(-iwt) 
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where b is a real parameter while p ,  and p2 are two real Grassmann parameters. Such 
transformations lead to HF(b), TI@,) and T 2 ( p 2 )  as Noetherian constants of motion. 

On the basis of the one-to-one correspondence already known (Niederer 1973) 
between the current bosonic harmonic oscillator and the free case, let us now extend 
it to the supersymmetric context characterised by the Hamiltonian (2.18). The Schrodin- 
ger equation for the supersymmetric harmonic oscillator is 

( id ,+ td2 , - tw2x2- fwa , )$ ( t ,  x)  = O  (3.11) 

where $ is a two-component wavefunction 

(3.12) 

This system can equivalently be written as a set of two equations 

(id, + fd2 , - fw2x2-fw~)~( ' ) ( f ,  x)  = O  (3.13) 

for E = * l .  Then let us study the correspondence between (3 .13)  and the free Schrodin- 
ger equation 

(id, +t&)p(u, U )  = o (3.14) 

expressed in terms of oscillator coordinates (Niederer 1973) 

U = U - '  tan wt U = (cos wt)-'x. (3.15) 

As already noticed (Niederer 1973) in the bosonic context, (3.14) and the equation 

( ia ,+ ta~-fw2x)x( t ,x )=O (3.16) 

are in such a one-to-one correspondence if 

(3.17) X ( t ( u ,  u),x(u,  u ) ) = ( l + w  2 U 2 ) 1/4 exp[-io2uu2/2(1+w2u2)]p(u, U )  

or conversely 

p(u(t, x) ,  u ( t ,  x)) =(cos exp(Siwx2 tan o t ) X ( t ,  x). (3.18) 

Then, in our supersymmetric context, if we take 

9" ' ( t (u ,  U), U)) = f ' " ' ( u ) x ( t ( 4  u),x(u, U)) (3.19) 

we will get the one-to-one correspondence between (3.13) and (3.14) if and only if 
f'"( U )  satisfies the equation 

2i(1 +~*u~)df"'(u)-w~f'~)(~) =o.  (3.20) 

This implies up to a constant 

f'"(u) = exp(-fiE tan-' w u ) .  

Equation (3.19) is finally 

$'"( t (  U, U), x( U, U)) = h'"'( U, u)p( U, U )  

with 

(3.21) 

(3.22) 

(3.23) 
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Conversely, we have 

cp( U( t ,  x), u (  t ,  x)) = h""( t ,  x)I,!J(')( t ,  X)  

with 

h ( F ) ' ( t , ~ ) = ( h ( P ) ) - ' ( u ( t , ~ ) ,  v ( t , x ) )  

= (cos wt)'/'exp(fieor) exp(fiwx2 tan ut). (3 .25)  

In order to confirm the correspondence at the level of the symmetry operators, we 
have to transform these operators by h'"G(3.23) .  More precisely, on the solution 
I,!J( 1, x)  = ( 3 . 1 2 )  of the supersymmetric harmonic oscillator, we have 

where 

exp(fi tan-' w u )  
(exp( -fi Fn- '  w u )  

1143 

( 3 . 2 4 )  

(3 .26)  

(3 .27)  

Then if we denote by XHo a symmetry operator for our harmonic oscillator the 
corresponding symmetry operator for the free case becomes 

(3 .28)  

I t  is then easy to show that the usual symmetry operators of spatial translation 
( P o  = and pure Galilean transformation (KO = -ius, - v )  of the free case are 
recovered as corresponding to P and K obtained from P+, P- in (3.1). Otherwise 
from the fact that 

xo( U, 0) = M-'XHO( t (  U, U), x( U, v))M. 

HB = ${ P+, P-}  c + -  --lip2 2 + c- = f i  P2 ( 3 . 2 9 )  

it is easy to determine the corresponding free operators. The free Schrodinger Hamil- 
tonian operator is then obtained as 

HO= -;a; =.! , (Hi+ (3 .30)  

while the dilation ( D o )  and expansion (A ' )  operators are 

Do = 2 uH, - i ua, + $ = Cy/ w 

A'= u 2 H s + i u v d , + f i u + f u 2 =  ( H i -  C ; ) / ( 2 w 2 ) .  
(3 .31)  

Finally, the additional symmetry operators H , ,  T, are also transformed to give 

4. Supersymmetries of the harmonic oscillator 

As already noticed in 0 2 the supersymmetric charges Q+ and Q- given by (2 .19)  (or 
0' and Q2 given by ( 2 . 2 0 ) )  are intimately connected to the construction of the 
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supersymmetric Hamiltonian (2.18). The existence of other supersymmetric charges 
denoted by S ,  and S -  (or correspondingly S' and S 2 )  is due (Fubini and Rabinovici 
1984) to the conformal invariance of the system under consideration. Thus such 
supercharges can be introduced here. They are found in the following forms: 

1 
S ,  = - exp( T 2 iwt ) (  p i iwx)a,  (4.1) a 

or 

S' = f cos 2wt( p a '  - wxa') + + sin 2wt( po' + wxa')  

and  (4.2) 

S' = + cos 2wt( p a 2  + wxa')  - t sin 2wt( p a '  - wxa'). 

[ H ,  S,] = f 2wS, 

Notice that we have 

(4.3) 

ensuring 

(d/dt)S,=d,S,+i[H, S,]=O. 

The supersymmetric charges of Q and S types are both associated with supersym- 
metric coordinate transformations. Within the Lagrangian formalism with L = (3.7) 
they correspond to 

where 

p ( t )  = (pI  + i p 2 ) +  ( vl + i v 2 )  exp(-2iwt) (4.5) 

p l ,  p 2 ,  vI  and v2 being real anticommuting parameters associated with Q , ,  Qz, SI and 
S2 respectively. 

Consequently the maximal kinematical invariance superalgebra of the supersym- 
metric harmonic oscillator is of dimension 12 (plus 1 for the identity operator of the 
central extension). There are now six odd generators T,, Q* and S,.  

The non-zero commutation and anticommutation relations including the supersym- 
metric generators are then given by 

(4.6) 

and 
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1 
{Q,, T,}= *- P= Ji 

Ji 
1 

{ S * ,  T,} = 7- P,. 

(4.7) 

Let us notice that the supercharges Q* and S ,  taken together with HB, HF and C, 
give rise to the superalgebra Osp(2/2) already mentioned by Balantekin (but in the 
three-dimensional case). Our superalgebra appears as the largest one associated with 
the supersymmetric one-dimensional harmonic oscillator: besides Osp(2/2) it contains 
the additional operators P,, T, and I generating another superalgebra which could 
be called the ‘Heisenberg superalgebra’ Sh( 1). In fact we have constructed the semi- 
direct sum Osp(2/2) 0 Sh( 1) characterised by the whole set of commutation and 
anticommutation relations (3.3), (3.5), (3.6), (4.6) and (4.7). 

Now in order to understand more deeply the contents of this superalgebra let us 
show that all the generators of Osp(2/2) are products of the Sh(1) generators. Indeed 
as we have already noticed the connections between HB, C,  and P, in (3.29), here 
we can add the following: 

(4.8) H -1 F-2w[T+, T-l 
and 

1 i 
S , =  +- P,T,. (4.9) a Q f =  *- P,T, Ji 

Finally, in order to complete the one-to-one correspondence mentioned in 0 3, we 
have to add the free generators corresponding to supersymmetry. It is not difficult to 
show from (4.9) and from the correspondence between P*, T, and their free version that 

1 
22: + S : )  =- Poa, Ji 

1 1 Y: = *- ( Q: + s:) = - K O ~ , .  Ji Ji 

(4.10) 

Equations (4.10) give the supersymmetry generators associated with the free Schrodin- 
ger equation. They are simply expressed in terms of the generators of space translations 
and pure Galilean transformations and of matrices U,. They ensure the expected 
(Fubini and Rabinovici 1984) anticommutation relations. Through this complete 
one-to-one correspondence between the supersymmetric harmonic oscillator and the 
free case we also conclude as expected that the free Schrodinger equation (whose 
supersymmetric version coincides with the non-supersymmetric one) does admit super- 
symmetries. 

5. The oscillator super-representation on energy states 

By using eigenstates of the energy operator, Niederer (1973) has obtained a discrete 
description of the oscillator representation and has shown that the generators of ho( 1) 
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are ladder operators. With respect to such a basis the solutions of (3.16) are labelled 
by the radial quantum number n and are given by 

(5 .1)  

where n = 0, 1,2, . . . , the c, being ad hoc normalisation coefficients and H, the usual 
Hermite polynomials. 

With a view to the resolution of our equation (3.11) in the supersymmetric context, 
the two-component solutions have to be 

,yn(t, x )  = c, e ~ p [ - i w ( n + i ) t - ~ w x ~ ] H , , ( ( 2 w ) ’ ~ ’ x )  

q F ’ ( r ,  x )  = a(‘) exp(-+iewt),y,(t, x )  & = * l .  (5.2) 

(a ( 1’)2 + ((y ( - 1 y  = 1 (5.3) 

The coefficients a ( ’ )  and a(-’’ are such that 

in order to ensure, at fixed time, the usual normalisation 

q:’*(x)’P:’(x) dx  = 1. (5.4) 

We can then study the action of the generators belonging to the superalgebra pointed 
out in § 4. From simple and usual quantum mechanical calculations combined with 
the well known properties of Hermite polynomials we get through (3.1): 

~ + ~ y ’ ( t ,  x )  = exp(-iwt)[2w(n + ~)]”~q:,!~(t, x )  

and 

P-qf)(r, x )  = e ~ p ( i w t ) ( 2 o n ) ” ~ ~ ~ ~ ~ ( t ,  x).  

Moreover by using (3.1) (or (3.29) in a simpler way) we also obtain 

c+q:)(r, x )  = -iw exp(-2iwt)[(n+ l ) ( n  + 2 ) ] ‘ / * ~ r : ~ ( r ,  x )  

c-v?)(~, x )  = iw exp(2iwt)[n(n - ~ ) ] ” ~ q ! , ? ~ ( r ,  x) 

and 

HBVy)( t, x )  = w (  n +t)q(nE’( t ,  x) .  

From the definitions (3.4), we easily obtain 

Finally the connections (4.8) and (4.9) and the above results give 

( 5 . 5 )  

(5 .6 )  

(5.9) 
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Equations (5 .5 ) - (  5.9) completely determine the super-representation of the harmonic 
oscillator associated with the superalgebra Osp(2/2) 0 Sh( 1). We evidently recognise 
in ( 5 . 5 )  and (5.6) Niederer's results in the non-supersymmetric context and in particular 
his one-step and two-step ladder operators (up to signs and factors of i we have the 
correspondence C,, HB, P, with his notation (Niederer 1973) I , ,  13, P,, respectively). 
Our specificities are evidently given by (5.7) and (5.9) showing the action of the 
generators T,, Q, and S, on the eigenfunctions of the orthonormal energy basis. As 
already noticed (Witten 1981, Salomonson and Van Holten 1982) the ground state has 
to be annihilated by Q+ and Q-. It is precisely given by 

JI: = (0, ~lb-")  = (0, exp(-wx2/2)). 
Useful information can then be obtained from such results. For example we easily 

obtain from (5.6) that 
C+C-V\Ir',"'=w2n(n-1)V\Ir',"' c _ c , v ~ I : ' = ~ * ( ~ + ~ ) ( ~ + ~ ) v ~ I : '  

H;V:'= w 2 ( n 2 +  n+a)V\Ir',"'. 

CO = ( 1/8w2)({ C+, C-} - 2H;) 

and 

Consequently the Casimir operator of the subalgebra so(2, l )  given by 
(5.10) 

has the (expected) eigenvalue A. This subalgebra so(2, l )  previously called 'the 
spectrum-generating algebra of the harmonic oscillator' is thus incorporated in our 
superalgebra Osp(2/2) 0 Sh(1) as it was in the maximal kinematical invariance algebra 
(Niederer 1973). Due to the one-step ladder operators P+ and P- and to the relations 
(3.21) and (4.9), we need only one irreducible super-representation of our superalgebra 
so that Osp(2/2) 0 Sh(1) is really the largest spectrum-generating superalgebra of the 
harmonic oscillator. 

In order to complete the study of this spectrum-generating superalgebra let us add 
a few comments on its Casimir operators and the associated supergroup chain. From 
recent results (D'Hoker and Vinet 1985b, Balentekin 1985) the Osp(2/2) quadratic 
Casimir operator takes the form 

C2( O~p(2 /2 ) )  = CO + ( 1/4w2)H:+ fw (HF - Q+Q- + S + S - )  (5.11) 
(notice the following correspondence with Balantekin's notation ( 1985): 
HB-Ko, C , o  K,, HF- Y, Q+- V-, 0-0 W,, S + o  V,, S-- W-). In our realisa- 
tion it has (also) only zero eigenvalues and leads to non-typical (Pais and Rittenberg 
1975, Nahm and Scheunert 1976, Scheunert et a1 1977) representations. Now if 
Osp(2/2)0 Sh( 1) is under study, an elegant way to determine the corresponding 
Casimir consists in noticing that the extended one-dimensional Schrodinger algebra 
'Schr(l) ( x  ho(1)) is denoted by &,, in the Burdet-Paterna-Perrin-Winternitz 
classification (Burdet et a1 1978). Its Casimir operator CA is then easily obtained from 
CO = (5.10) through the following substitutions: 
c,+ C:= C,*(i/fi)P? and H B + H ; = H B - : { P + , P - } .  (5.12) 
Thus, due to the inclusions of so(2, l )  in Schr(l) and of Osp(2/2) in our largest 
superalgebra, we directly obtain the Casimir operator of Osp(2/2)0 Sh( 1) from C, = 
(5.11) through the substitutions (5.12) (CO+ CA) and the following ones: 

HF+ H;=HF-(w/2)[T+, T-] 
Q*+Q:= Q,F(i/JZ)PZT, (5.13) 
S, + S: = S, * ( i / f i )  P, T, 
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leading once again to vanishing C5 and correspondingly to non-typical representations. 
Finally the dynamical symmetries of the harmonic oscillator are associated with the 
supergroup chain 

OSp(2/2) x SH( 1) 2 OSp(2/2) 2 OSp( 1/2) x SO(2) 

= S p ( 2 ) 0 S 0 ( 2 )  2 S O ( 2 ) 0 S 0 ( 2 )  (5.14) 

all the eigenstates being labelled by the eigenvalues of HB and HF 

6. The three-dimensional case with the maximal set of symmetries 

If  the maximal set of symmetries is required, the particularly interesting three- 
dimensional case can now be considered by emphasising the constructions of the 
Hamiltonian ( 9  6.1), its superalgebra ( 0  6.2) and an 8 x 8 matrix realisation (§  6.3). 
The extension to the n-dimensional case ( 0  6.4) is also very briefly mentioned. Then 
all the considerations developed in § 5 apply here without difficulty. 

6.1. Construction of the Hamiltonian 

The Hamiltonian of the supersymmetric harmonic oscillator in three dimensions can, 
by analogy with the one-dimensional case and more particularly with (2.9), be defined 
in the form ( i , j  = 1,2,3)  

H = t { ~ ' + ( ~ w ) ~ + ( a , a , w ) [ 5 k ,  5'1) 

pi = -ia/ar, = -ia, 

{[k, 5') = s v  

15:,521= 0 (5k)'= 5' 

where 

[Pi, r,I = --is, 

while the superpotential is 

W = W (  r )  = $or'. 

We explicitly have 

(6.1) 

(6.2) 

(6.3a) 

(6.36) 

(6.4) 

H=f(p2+w2r2)+(w/2)[5:,  5!]=HB+ HF. (6.5) 
The supercharges satisfying (2.4) and (2.5) are then 

~ * = ( l / f i ) ( p ~ i v w )  * & * = ( l / f i ) ( p ~ i w r )  &* (6.6) 
and the corresponding Q' and Q' are again defined in terms of generators pp(a = 1,2). 
We have 

Q' = f (p .  < e ' + w r .  9') 

~ ' = t ( p .  p 2 - w r .  9') 

where the pp satisfy the Clifford algebra 

{ V f ,  Cpp1= 2aabsv.  

(6.7 

(6.8 
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6.2. The maximal kinematical superalgebra 

The maximal kinematical invariance group of the bosonic harmonic oscillator in three 
dimensions has also been determined by Niederer (1973). I t  is the so-called HO(3) 
group isomorphic to SCHR(33, the group of invariance of the three-dimensional free 
equation. The generators of the corresponding algebra are directly obtained 
one-dimensional case. We then have twelve generators denoted HB, C,, P ,  
the angular momentum operators (plus the identity). In particular we have 

[P,,, P-,I = 2w8,L 

Let us notice that 

hO(3)Z   SO(^, l)OSO(3))C!h,. 

for the 
and L, 

(6.9) 

(6.10) 

Now due to the independence of HF in terms of the coordinates p and r, the bosonic 
symmetries are maintained for the total Hamiltonian (6.5) and we can add to them 
the symmetries associated with the fermionic part. Indeed by analogy with the one- 
dimensional case, the generators corresponding to the symmetries of HF are 

H F =  (w/2)[5L, 5'1 T ,  = exp( 7 iwt)tI. (6.11) 

We then obtain a superalgebra of symmetries of dimension 20. 
In what concerns supersymmetries, besides the generators of Q type given by (6.6) 

or (6.7), we have the generators of S type directly generalised from the one-dimensional 
expressions (4.1), i.e. 

S ,  = ( I /&) exp( 7 2iwt)(p i iwr )  * t*. (6.12) 

We again notice in correspondence with (4.9) 

Q* = *(i/&!)PT T ,  S ,  = F (i/&)P, T,. (6.13) 

Then, in order to get a closed superalgebra, we have to consider the total angular 
momentum including spin as expected: 

J = L +  S = r x p +&+ x t-. (6.14) 

Finally we conclude that the maximal kinematical invariance superalgebra of the 
supersymmetric harmonic oscillator is of dimension 24 and is [Osp(2/2)O 
s0(3) ]0  Sh(3). 

The essential supplementary commutation relations (with respect to the one- 
dimensional case) are those dealing with the angular momentum operators J = (6.14). 
Indeed we have 

(6.15) 

6.3. A 8 x 8  matrix realisation 

The generators (c4 of the Clifford algebra (6.8) can be realised by 8 x 8 Hermitian 
matrices. Let us choose the specific Gunaydin and Gursey (1973) realisation, for 
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example 

satisfying indeed 

(6.16) 

(6.17) 

We can make the correspondence 

Q: = -r2 Q: = r6 Q: = -r3 (6.18) 

so that 

6: = ; ( r 4 + i r l )  5: = 4( rs - ir2) 5 3  + -1 - 2(r6 - ir3).  (6.19) 

It is then easy to show that 

=diag(3, -1, -1 ,  -1, -3, 1, 1, 1). (6.20) 

Within such a representation the Schrodinger equation for the supersymmetric har- 
monic oscillator is 

( ia ,+$A-&.02r2-~w[5~,  5!])I ,b(t,  r)=O (6.21) 

where I) is an eight-component wavefunction. In the energy basis corresponding to 
the developments of § 5  but in the three-dimensional context, we get the eight com- 
ponents 

(6.22) 

where xn ( t ,  r)  is a solution of the usual harmonic oscillator and where the normalisation 
condition is 

(a1)?+. * .  + ( a g ) 2 =  1. (6.23) 

The ground state is then given by taking all the a equal to zero apart from as: 

cLoT(4 r)  = (O,O,O, 0, cLi(r), o,o, 0). (6.24) 
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Let us now realise the algebra (7.1) with the conditions (6.36) by 4 x 4  matrices 
(Balantekin 1985, Gamboa and Zanelli 1985): 

We then obtain 

implying that 

and 

(7.4) 

(7.5) 

(7.7) 

Finally the explicit Hamiltonian (7.3) is 

H = f( p 2  + w2r2)U + w (  U 9 L + +I)@ u3 

H, = t ( p 2 +  w 2 r 2 ) U i  w ( a .  L+;n). 

(7.8) 

(7.9) 

By this way we have explained the Hamiltonian proposed by Balantekin (1985) and 
Ui and Takeda (1984). 

Let us recall that Balantekin (1985) has shown that the Hamiltonian (7.8) admits 
a dynamical supersymmetry associated with the superalgebra Osp(2/2) 0 so(3) identical 
with ours (see § 6.2). Such a result is immediately recovered here. Indeed, since the 
conformal symmetries (generated by H B ,  C, )  of the bosonic part are conserved by the 
fermionic part (there is a direct sum between the algebra so(2, 1) and the algebra of 
rotations generated by L ) ,  the conformal supersymmetries of S type are also conserved. 
In contrast, here our superalgebra Sh(3) cannot be included into the dynamical 
supersymmetry algebra. Indeed the generators P ,  satisfying (6.1 5 )  are not associated 
with conserved quantities. The symmetries of P ,  type of the bosonic part are broken 
by the fermionic part. Finally the symmetries of T, type are also broken by the total 
Hamiltonian (7.8) due to the presence of the spin-orbit coupling term. 

and can be split into two Hamiltonians H ,  ( 2 x 2  matrices) 

7.2. The position-like coupling 

The procedures described in §§ 6 and 7.1 ask for supercharges of Q type given by (6.6) 
ensuring the relations (2.4) and (2.5). They only differ by requiring that the fermionic 
generators 6: satisfy different algebras ((6.30) or (7.1) respectively). Another procedure 
has also been proposed by D’Hoker and Vinet (1985a) for the determination of a 
supersymmetric Hamiltonian describing the dynamics of a spinning particle in the 
presence of a A 2 / r 2  potential. Here let us apply this last method but to the supersym- 
metric harmonic oscillator. 

After D’Hoker and Vinet we can first define the supercharges 
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From (2.5) we immediately obtain 

H = t [ P , P / { L  77J)+(VW2{170+, 17~H+5VPl({770+, 7 7 1 - } + { 7 7 i ,  779) 
-ti(alV)(77:770+ ~Lp0,) .  (7.11) 

From the condition that the bosonic part must be recovered we obtain 

(7.12) 

while from the Hermiticity condition of the Hamiltonian (7.11), we obtain 

{To+, 77:}+{77;, 773=0* (7.13) 

Then, for example, we can realise the algebra (7.12) and (7.13) in terms of 4 x 4 matrices: 

(7.14) 77: = *;( 1 * iy’) y i  77: = *ti( 1 * i ys) yo 

where the Dirac matrices y p  ( 6  = 0, 1,2,3) satisfy 

{ Y p ,  Y”) = 2TP” 

Y s = Y  Y Y Y ’  

(YO)’ = YO ( f ) +  = - y’ 
0 1 2 3  

The conditions (7.12) are then satisfied by 
- f  = -ti ys[ y’, y-’]. 

The Hamiltonian (7.11) finally becomes 

(7.15) 

(7.16) 

H = ;[ p 2 +  (V w)2] +;yay * v v (7.17) 

and for the supersymmetric harmonic oscillator we explicitly have 

H = $ ( p 2 + w 2 r 2 ) + ; w y o y ’  i ( i =  r / r ) .  (7.18) 

It is easy to show that the supercharges Qf = (7.10) are conserved quantities, i.e. verify 
(2.4). Explicitly they become 

1 
Q* = *- ( 1  * i y 5 ) ( y .  p+ iwyOr)  (7.19) 

2 v 5  

and in connection with the definitions (2.10) and (2.11) of Q’ and Q2, they lead to 

Q’ = f i y 5 ( y . p + i w y 0 r )  QL y5Q1 (7.20) 

these expressions being analogous to those given by D’Hoker and  Vinet (1985a) in 
their context. 

Unfortunately such a construction leads us to a Hamiltonian (7.18) which does not 
admit conformal (super)symmetries due  to the presence of the fermionic part. The 
only conserved quantities are the supercharges Q* (or  Q’ and Q’) and the angular 
momentum 

J = r x p + $ X  2 = t i y  x y. (7.21) 
With the Hamiltonian (7.18), we obtain a six-dimensional superalgebra of invariance 
such that 

(7.22) 
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